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1.1 INTRODUCTION

Graphs are used in Computational Biology to model the relationships between bi-
ological entities. For example, experimentally determined protein interactions are
commonly represented by a graph, the so-calledprotein interaction network, where
proteins are nodes and every pair of interacting proteins isconnected by an edge.
Even though such a representation may not capture all the complexity of protein inter-
actions in underlying biological processes, the study of the topological properties of
these networks has become an important tool in searching forgeneral principles that
govern the organization of molecular networks. For example, it was observed that in
protein interaction networks some types of small-size subnetworks are much more
abundant than would be expected by chance [53]. The discovery of these overrep-
resented subnetworks ornetwork motifshas led to investigation of their information
processing properties [64] and network evolution mechanisms that could account for
their emergence [52]. Usage of graph theoretical tools is not limited to the study
of protein interaction networks, graphs are also used to model metabolic networks
(processes), gene co-expression, gene co-regulation, phylogenies, etc.

In general, graphs are not required to have any type of regularity. This makes them
very flexible combinatorial objects, which are able to represent complex and diverse
relationships. In practice, however, graphs that model real world phenomena often
belong to families of graphs with a special structure, whichcan be exploited to gain
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an insight into the phenomenon that generated the graph. To clarify this statement
we start with a following toy example taken from everyday life.

Example: Elena decided to walk 40 miles to raise funds for an importantcause. Her
friends provide her with support by walking along her, but each of them walks only for
10 miles (see Figure 1.1(a)). Her husband, Julian, volunteers to document the event
and takes a group picture every time a new supporter joins Elena (see Figure 1.1(b)).
After the event is completed Julian handles Elena a box with photographs. Elena
notices that the pictures are not ordered and then she learnsthat Julian lost somewhere
the film. Can she reconstruct the order her supporters joinedthe walk without the film,
i.e., can she use the information in Figure 1.1(b) to tell that her friends joined the walk
in the following order (Merrick, Nilani, Dami, Teresa, Raja, Praveen)? If Julian had
lost the film before developing it (so Elena does not have her precious pictures) but
her supporters remember their walking partners, however they do not remember the
order in which these partners joined, would she still be ableto reconstruct the history
of events? Interestingly, if except for the very beginning and very end she never
walked alone and remembers a person who supported her first she can reconstruct
this order: in the first case she would be able to recover the order completely; in the
second case she still would be able to reconstruct the order except for the relative
placement of Dami and Teresa; she would not be able to tell whether Dami joined
the walk before Teresa or the other way around.

In the example above, Elena exploits the special structure of the supporters overlap
graph in Figure 1.1(c) to understand the “real world phenomenon”, the participation
of her friends in the fund raising event in Figure 1.1(a). Thegraph in Figure 1.1(c)
is an interval graph, meaning that there is a set of intervals on a real line such that
vertices of the graph are in one-to-one correspondencewiththe intervals in the set and
there is an edge between a pair of vertices if and only if the corresponding intervals
intersect; the set of intervals is called aninterval representationof the graph. Interval
graphs are a special case ofintersection graphs, graphs whose vertices are in one to
one correspondence with a family of sets such that there is anedge between a pair of
vertices if and only if the corresponding pair of sets have a non-empty intersection.
Coming back to our example, the supporters overlap graph in Figure 1.1(c) is an
interval graph with one possible interval representation shown in Figure 1.1(a). Given
the graph in Figure 1.1(c) Elena won’t be able to reconstructthe history of events up
to the smallest detail, such as Merrick joined the walk 8 miles before Nilani, but she
would be able to tell that all possible valid (Merrick is the first to join the walk and
everybody walks for exactly 10 miles) interval representations of this graph result in
the same order (up to relative placement of Dami and Teresa) of her friends joining
the walk.

In this chapter we will demonstrate how graph theoretical tools are used in Com-
putational Biology to elucidate the dynamics of biologicalprocesses. In particular,
we will show applications of the well studied graph family known aschordal graphs.
Chordal graphs are exactly these graphs that are intersection graphs of subtrees of
a tree, and therefore they include interval graphs which canbe seen as intersection
graphs of subtrees of a path (a degenerate tree). We start with a background infor-
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Fig. 1.1 Elena’s story.(a)The order in which Elena’s friends, Merrick, Nilani, Dami, Teresa,
Raja, and Praveen, join the walk. Each friend is representedby an interval showing his/her
stretch of the walk.(b) Julian’s pictures. There are six pictures showing the participants when
each friend joins the walk.(c) The supporters overlap graph: Elena’s friends are nodes and
there is an edge between two friends if they were walking together.
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mation on graph theoretical tools used to deal with chordal graphs (see Section 1.2).
We then proceed to show how these tools are applied to two problems in Computa-
tional Biology: phylogenetic tree reconstruction (see Section 1.3) and formation of
multi-protein complexes (see Section 1.4). In both applications, structure of a certain
graph is exploited (in a manner similar to the toy example above) to elucidate the
dynamic behavior of the underlying biological process. In the first application we are
interested in the dynamics of evolution, i.e., the order in which the taxa evolved from
a common ancestor. In the second application we are interested in the dynamics of
multi-protein complex formation during a biological process, such as cell signalling,
i.e., how multi-protein complexes are formed during the process and the order in
which proteins join these complexes.

1.2 GRAPH THEORY BACKGROUND

The purpose of this section is to provide the reader with an overview of relevant graph
theoretic results for chordal, interval, and cograph graphfamilies. We state here
results that are used in the biological applications of these graph families discussed
in latter sections. For a thorough treatment of chordal graphs and interval graphs we
refer the reader to now a classical book by Golumbic [35]; other excellent references
are a recent book on intersection graph theory by McKee and McMorris [50], a chapter
“An introduction to chordal graphs and clique trees” by Blair and Peyton in [33], and
a set of lecture notes by Shamir [63]. For an overview of structural and algorithmic
properties of cographs we refer the reader to the paper by Corneil et al. [19];
modular decomposition is surveyed in a paper by Mohring and Radermacher[54], a
nice overview can be also found in a chapter “Decompositionsand forcing relations
in graphs and other combinatorial structures” by McConnel in [36].

We assume that all graphs are undirected and connected. We denote byG = (V, E)
a graph with a set of verticesV and a set of edgesE. Given a graphG = (V, E),
a subgraphG′ = (V ′, E′) is an induced subgraphof G if V ′ is a subset ofV and
E′ contains all the edges of the original graph whose both endpoints are inV ′; we
may also say thatG′ is a subgraph ofG inducedby V ′. For a vertexv ∈ V , we use
N (v) to denote the set ofv’s neighbors inG, i.e.,N (v) = {u | (v, u) ∈ E}. We use
“−” to denote set difference operation such that for two setsX andY the setX − Y

contains elements that are inX but not inY .

1.2.1 Chordal Graphs

In a cycle achordis an edge that connects two non-consecutive vertices of thecycle.
For example, a cycle{a, b, c, d} in Figure 1.2(a) has a chord(b, d). A chordal graphis
a graph that does not contain chordless cycles of length greater than three;other names
given to graphs having this property arerigid circuit graphsandtriangulated graphs.
Chordality is ahereditary graph property, meaning that any induced subgraph of a
chordal graph is chordal.
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Fig. 1.2 (a) A chordal graphG = (V, E). (b) A tree representation ofG: the tree is on
the left and the family of subtrees is on the right. Every subtree ,Ri, is schematically shown
by putting a colored circle next to its nodes on the tree. For example,R3 is shown by red
circles. (c) The set of maximal cliques inG. There are four maximal cliques in the graph,
Q1, Q2, Q3, andQ4. (d) The clique graph ofG. The clique graph is the intersection graph
of {Q1, Q2, Q3, Q4}. (e) A clique tree representation ofG: the clique tree is on the left
and the family of subtrees is on the right. It should be noted that a clique tree is a valid tree
representation of a chordal graph. Indeed, every vertex in the graph corresponds to a subtree
of the clique tree and two vertices are adjacent if and only iftheir corresponding subtrees
intersect.
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In a graph an ordering of vertices{v1, ..., vn} is a perfect elimination ordering
(PEO) if and only if for every positioni the subgraph induced by the neighbors of
vi that appear later on in the ordering is complete, i.e., the subgraph induced by
N (vi) ∩ {vi+1, ..., vn} is complete. For example in the graph of Figure 1.2(a), the
ordering{a, b, c, e, f, d} is a PEO while the ordering{a, b, c, d, e, f} is not. It was
shown by Fulkerson and Gross [26] that only chordal graphs can have a PEO.

Theorem 1 (Fulkerson&Gross1965)A graph is chordal if and only if there exists
a perfect elimination ordering of its vertices.

This alternative characterization of chordal graphs is used by two linear time
chordal graph recognition algorithms [59, 66]. Given a graph, both algorithms
produce an ordering of its vertices which is a PEO if and only if the input graph is
chordal. Therefore, to determine whether the input graph ischordal it suffices to
check that the ordering output by the algorithm is a PEO. The earliest algorithm,
due to Rose and Tarjan [59], uses aLexicographic Breadth-First Search(LexBFS), a
modified version of the widely knownBreadth First Search[17] algorithm, to order
the vertices of the graph.

A maximal cliquein a graph is a subset of vertices that form a maximal complete
subgraph. Given a graphG, we will useQ(G) to denote the set of all maximal cliques
in G andK(G) to denote theclique graphof G, where vertices ofK(G) are maximal
cliques inG and there is an edge between a pair of vertices (maximal cliques) if their
intersection is not empty. As an illustration consider the graph in Figure 1.2(a). This
graph has four maximal cliques, which are shown in Figure 1.2(c). The clique graph
K(G) is shown in Figure 1.2(d); it has four verticesQ1, Q2, Q3, andQ4, and is
complete as every pair of vertices (maximal cliques) has a non-empty intersection.
(In this case all maximal cliques contain vertexd ∈ V of the original graphG.)

Even though computing all maximal cliques of a general graphis a difficult
problem [28], all maximal cliques of a chordal graph can be computed efficiently.
Moreover, the number of maximal cliques in a chordal graph isat most|V |. (For
details please refer to Section 4.2.1 in the chapter by Blairand Peyton [33].)

Let F = {R1, ..., Rn} be a family of subsets. Theintersection graph ofF is a
graphG = (V, E) whereV = F andE = {(Ri, Rj) |Ri∩Rj 6= ∅}, i.e., the vertices
of the graph are the subsets inF and there is an edge between two vertices (subsets) if
their intersection is not empty. It can be shown that every graph is isomorphic to the
intersection graph of some family of subsets; the family of subsets can be thought as
an alternative representation of the graph and is called anintersection representation
of the graph. A variety of well known graph classes can be characterized by putting
restrictions on intersection representations of graphs inthe class. For example, an
interval graphis isomorphic to the intersection graph of a family of closedintervals
on the real line and achordal graphis isomorphic to the intersection graph of a family
of subtrees of a tree.

Even though the study of chordal graphs goes back to1958, the characterization
in terms of allowable intersection representations was given only in seventies [68,
31, 13]. In particular, it was established that a graph is chordal if and only if it is
isomorphic to the intersection graph of a family of subtreesof a tree; the tree and the
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family of subtrees are called atree representationof the chordal graph. Figure 1.2(b)
shows a tree representation of a chordal graph in Figure 1.2(a). Moreover, it was
shown that every chordal graphG = (V, E) has a special tree representation, the
so-calledclique tree representation, in which the tree is a spanning tree ofK(G)
and the family of subtreesF = {Tv | v ∈ V } is defined by setting eachTv to the
set of maximal cliques that containv. For example, Figure 1.2(e) shows a clique
tree representation for a chordal graph in Figure 1.2(a). This is summarized in the
following theorem:

Theorem 2 (Walter1972, Gavril1974, Buneman1974)LetG = (V, E) be a graph.
The following statements are equivalent:

1. G is a chordal graph.

2. G is isomorphic to the intersection graph of a family of subtrees of a tree.

3. There exists a spanning tree of the clique graphK(G) such that for everyv ∈ V

the subgraph of this tree induced by the set of maximal cliques containingv,
{Q | Q ∈ Q(G) andv ∈ Q}, is connected.

Given a chordal graph, all possible clique tree representations can be efficiently
computed. One approach [7] is based on the fact that clique trees are exactly
maximum weight spanning trees of the clique graphK(G), where the weight function
on the edges ofK(G) is defined as the amount of overlap between two maximal
cliques, i.e.,w(Q′, Q′′) = |Q′ ∩ Q′′|. Thus, in order to compute all possible clique
tree representations of a chordal graph, one simply needs tocompute all maximum
weight spanning trees of the clique graphK(G), for example by using an algorithm
from [32]. Another approach [39] builds on a connection between the edges of a
clique tree of a chordal graph and the set of minimal vertex separators in the graph.

Given a graphG = (V, E) not necessarily chordal, one is often interested in
finding a set of edgesE′ such that addition ofE′ to the graph makes it chordal; the
set of edges that does the job is called atriangulationof G. As a complete graph
is chordal by definition, any graph can be trivially triangulated by settingE′ to be
the set of all non-edges in the graph,E′ = (V × V ) − E. One may further ask
for a triangulation that possesses additional properties.A minimal triangulationof
a graph is a triangulation that is not properly contained in any other triangulation.
A minimal triangulation can be found efficiently [59] using avariant of LexBFS
algorithm for recognition of chordal graphs. Aminimum triangulationof a graph is
the triangulation with the smallest number of edges. Even though finding a minimum
triangulation of a graph is a difficult problem [71], there arefixed-parameter tractable
solutions [14, 45]. For example, an algorithm in [14] takesO( 4k

(k+1)3/2
(|V | + |E|))

to find a minimum triangulation ofG = (V, E) whenG has a triangulation whose
size does not exceedk. Therefore, if the size of minimum triangulation is small it
can be found efficiently.
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1.2.2 Interval Graphs

An interval graphis any graph that is isomorphic to the intersection graph of afamily
of intervals on a real line; the family of intervals is calledinterval representation
or sometimes aninterval realizerof the graph. Not every graph has an interval
representation; consider for example a chordless cycle of length four. The "invention"
of interval graphs is commonly attributed to the Hungarian mathematician Gyorgy
Hajos who in 1957 posed the problem of characterizing this family of graphs. Interval
graphs also appear in the work of the American biologists Seymour Benzer [6] who
used them to support his hypothesis that genetic material isorganized into a structure
having linear topology.

The first linear time algorithm for recognizing interval graphs is due to Booth and
Leuker [11]. In their paper the authors show how to test whether a family of subsets
of some ground setU has aconsecutive onesproperty, meaning that the members
of the family can be linearly ordered in a way such that for every element inU the
subsets containing it are consecutive in the linear order. Therefore, according to
the theorem below, an interval graph is recognized by testing whether the set of its
maximal cliques has a consecutive ones property.

Theorem 3 (Gilmore&Hoffman1964) A graph is an interval graph if and only if
its maximal cliques can be ordered in a linear fashion such that for every vertex in
the graph the set of maximal cliques that contain it is consecutive.

The above characterization implies that interval graphs are chordal. Indeed, if
maximal cliques of a chordal graph can be arranged in a tree then maximal cliques
of an interval graph can be arranged on a path. Therefore, interval graphs are exactly
these chordal graphs that have a clique tree representationwhich is a path.

In a graphG = (V, E) an ordering of vertices{v1, ..., vn} is aninterval ordering
(I-ordering) if and only if for every pair of positionsi < j the following holds: if
(vi, vj) ∈ E then(vi, vk) ∈ E for everyi < k < j. Recently another linear time
algorithm for recognition of interval graphs was proposed [18], which utilizes the
fact that only interval graphs can have an I-ordering. The main idea is to use a
multi-sweep LexBFS algorithm to produce an ordering of the vertices of a graph,
which is an I-ordering if and only if the input graph is an interval graph.

1.2.3 Modular Decomposition and Cographs

A modulein a graphG = (V, E) is a set of vertices,X , that have exactly the same
set of neighbors inV − X , i.e., for every pair of verticesu andv in X the following
holdsN (u) ∩ (V − X) = N (v) ∩ (V − X). For any vertexv, the set{v} trivially
satisfies the requirement for being a module and so does the set of all vertices in the
graph,V ; these sets are calledtrivial modules.

A graph that only has trivial modules isprime; for example, the graph in Fig-
ure 1.3(a) is prime, while the graph in Figure 1.3(b) is not. Anon-prime graph will
have other modules in addition to the trivial modules. Two modules in a graphover-
lap if they share vertices but neither module properly containsthe other. A module
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Fig. 1.3 (a) A prime graph.(b) A non-prime graph.(c) The modular decomposition tree
of the graph in(a). (d) The modular decomposition tree can be used to derive a Boolean
expression for the maximal cliques in a graph. The corresponding modular decomposition
tree. The Boolean expression is constructed by moving alongthe tree from the leaves to the
root, replacing each "series" node with an∧ operator and each "parallel" node with an∨
operator. The Boolean expression for the cograph in(b) is (((a ∨ c) ∧ b) ∨ e ∨ f) ∧ d.

is strongif it does not overlap any other module in the graph andweakotherwise; by
definition trivial modules are strong modules.

The strong modules in a graphG = (V, E) can be organized into a hierarchical
structure where every module is attached to the smallest module that contains it. It can
be argued that this construction results in a unique tree, the modular decomposition
tree of the graph, with the trivial modules of the form{v} being the leaves of the
tree, the moduleV being the root, and all other strong modules being the internal
nodes. The modular decomposition tree of the graph in Figure1.3(b) is shown in
Figure 1.3(c). This graph has eleven modules, all of which are strong.

Even though weak modules of a graph do not directly appear in the modular
decomposition tree, it can be shown that every weak module isa union of strong
modules that are directly attached to the same internal nodein the modular decom-
position tree. When this happens the internal node is labeled asdegenerate; internal
nodes that are not degenerate are labeled asprime. Furthermore, the union of any
subset of children of a degenerate node is a module (necessarily weak). Therefore,
the modular decomposition tree captures all modules in the graph: the strong mod-
ules are the nodes of the tree and the weak modules are the unions of children of
degenerate internal nodes.

Let X be a module in a graphG = (V, E) represented by internal node of the
modular decomposition tree and letC be the set of modules that correspond to its
children. Aquotient graphassociated withX is obtained by contracting every module
in C into one node in the subgraph ofG induced byX , GX . For any pair of modules
Y andY ′ in C, either all edgesY ×Y ′ belong toE or none does ((Y ×Y ′)∩E = ∅).
Therefore, the quotient graph associated withX completely specifies the edges ofGX

that are not within one module inC. Moreover, it can be shown that the quotient graph
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associated with a module that corresponds to a degenerate node is either a complete
graph or a complement of a complete graph. If we label degenerate nodes asseries
whenever the corresponding quotient graph is complete andparallel otherwise, and
record the structure of quotient graphs associated with prime nodes, then the modular
decomposition tree together with this additional information completely specifies the
structure of the graph.

A complement reducible graph(a cograph) can be recursively defined in the
following manner: (i) a single vertex graph is a cograph; (ii) if G1, ..., Gk, are
cographs then so is their unionG1 ∪ G2... ∪ Gk; (iii) if G is a cograph then so is
its complementḠ; A pair of nodes,u andv, in a graph aresiblings if they have
exactly the same set of neighbors, i.e.,N (u) − {v} = N (v) − {u}. If the nodes
of the pair are connected by an edge, we call themstrong siblingsandweak siblings
otherwise. The following theorem summarizes some of the structural properties of
cographs given in the paper by Corneilet al. [19].

Theorem 4 LetG = (V, E) be a graph. The following statements are equivalent.

• G is a cograph.

• Every non-trivial induced subgraph ofG has a pair of siblings.

• G does not contain an induced subgraph isomorphic to a path of length four
(P4).

Cographs are exactly graphs with the modular decompositiontree without prime
modules. Therefore the modular decomposition tree of a cograph with the "se-
ries"/"parallel" labeling of nodes provides an alternative representation of the graph.
This representation is closely related to thecotreerepresentation for cographs [19]. In
particular, the modular decomposition tree can be used to generate a Boolean expres-
sion describing all the maximal cliques in a cograph and obtain efficient algorithms
for other otherwise difficult combinatorial problems [19].The Boolean expression
is constructed by moving along the tree from the leaves to theroot, replacing each
"series" node with an∧ operator and every "parallel" node with an∨ operator. For
example, Figure 1.3(d) shows how to obtain the Boolean expression for the graph in
Figure 1.3(b). For a cograph the modular decomposition treecan be constructed in
linear time [20].

1.3 RECONSTRUCTING PHYLOGENIES

Consider a set of taxa, where each taxon is represented by a vector of attributes, the
so-calledcharacters. We assume that every character can take one of a finite number
of states and the set of taxa evolved from a common ancestor through changes of
states of the corresponding characters. For example, the set of taxa can be described
by columns in multiple sequence alignment of protein sequences. In this case each
column in the alignment is a character that can assume one of twenty possible states.
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Parsimony methods seek a phylogenetic tree that explains the observed characters
with the minimum number of character changes along the branches of the tree.

In our working example for this section the set of taxa includes eight species
shown in Figure 1.4 (a); each species is described by two binary characters. As
there are (2n−5)!

2n−3(n−3)! unrooted binary trees onn labeled vertices [15], there are
11!
255! = 10, 395 possible phylogenetic trees for the set of species in our example.
One such tree is shown in Figure 1.4(b). Once the tree topology is fixed, an optimal
assignment/assignments of the character states to the internal nodes can be efficiently
computed [25]; the assignment of characters in Figure1.4(b) is optimal for this tree
topology and requires three character changes.

We call a phylogenetic treeperfect phylogenyif every character state arose only
once during evolution or in other words the subgraph of the tree induced by the nodes
having this character state is connected. The phylogenetictree in Figure 1.4(b) is not
a perfect phylogeny as the character state0 for the character “intron256” arose twice,
once in the part of the tree defined byScandSp and another time in the part of the
tree defined byDm andAg. Given a phylogenetic tree, the number of changes due
to a specific character is bounded from below by the number of states this character
assumes minus one. It is easy to see that the lower bound is achieved only when
each character state induces a connected subgraph of the tree; in the phylogenetic
tree of Figure 1.4 (b) the character “intron105” achieves the lower bound, while
the character “intron256” does not. Therefore, a perfect phylogeny is the best tree
in a sense that it achieves this lower bound for every character. Perfect phylogeny
often does not exist and we start this section with an exampleof how Chordal Graph
Theory can be used to address theCharacter Compatibility Problem: Given a
set of taxa, does there exist the perfect phylogeny for the set?

When a set of taxa admits perfect phylogeny we say that the characters describing
the set arefully compatibleor just compatible. The compatibility criteria is quite
restrictive, in the case of intron data, for example, it means that for every intron
the transition from “0” state to “1” state occurred only onceduring evolution. We
conclude this section by showing how Chordal Graph Theory can be used to relax
the compatibility criteria in a meaningful way when taxa aredescribed by a set of
binary characters.

1.3.1 Perfect Phylogeny and Triangulating Vertex-ColoredGraphs

From the set of input taxa we can construct apartition intersection graphin the
following manner: (i) introduce a vertex for every character state; (ii) put an edge
between two vertices if the corresponding character statesare observed in one or
more taxa together. In our working example the partition intersection graph will
have four vertices,105 (state “1” of the character “intron105”), −105 (state “0” of
the character “intron105”), 256 (state “1” of the character “intron256”), and−256
(state “0” of the character “intron256”) (see Figure 1.4 (c)). The name “partition
intersection graph” is due to the fact that each character state corresponds to a subset
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Fig. 1.4 A set of eight species:Anopheles gambiae(Ag), Arabidopsis thaliana(At ),
Caenorhabditis elegans(Ce), Drosophila melanogaster(Dm), Homo sapiens(Hm),
Plasmodium falciparum(Pf), Saccharomyces cerevisiae(Ag), andSaccharomyces
pombe(Sp). (a) The species are described by binary characters which correspond to the
presence (value of1) or absence (value of0) of introns. This is truncated data limited to just
two introns (105 and256) out of about7, 236 from the study of Rogozinet al. [58]. (b) A
phylogenetic tree: the leaves are the species in the set and are labeled with the input character
states; the internal nodes are ancestral species and are labeled with the inferred character states.
This particular tree requires three character changes , which are marked with solid bars on the
corresponding edges.(c) The character overlap graph. There are four vertices, one vertex per
character state,105 (state “1” of the character “intron105”), −105 (state “0” of the character
“intron 105”), 256 (state “1” of the character “intron256”), and −256 (state “0” of the
character “intron256”). Two vertices are connected by an edge if corresponding character
states are observed together in some taxon. The edge(105,−256), for example, is due to
speciesAg andDm.
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of taxa, the taxa that have this character state, and the subsets of character states of a
character partition the set of taxa under consideration.

There is an important connection between partition intersection graphs and the
Character Compatibility Problem. Indeed, if a set of taxa admits perfect phy-
logeny then there exists a phylogenetic tree, where for eachcharacter state the tree
vertices having this state form a subtree. As there is an edgein the partition intersec-
tion graph between every pair of character states whose subtrees intersect in the leaves
of the phylogenetic tree, this graph is either chordal or canbe triangulated without
introducing edges between vertices that correspond to the states of the same character.
(Additional edges may be necessary to account for subtree intersection which occurs
only at internal nodes of the phylogenetic tree.) The partition intersection graphs
were used by Buneman [13] (in his paper the author refers to these graphs asattribute
overlap graphs) to show that theCharacter Compatibility Problem reduces in
polynomial time to theTriangulating Vertex Colored Graph Problem. In
the latter problem we are given a graphG(V, E) and a proper coloring of its vertices,
c : V → Z. A vertex coloring is proper if there does not exist an edge inG whose
endpoints are assigned the same color by the coloring. We want to determine if there
exists a chordal grapĥG(V, Ê) such thatE ⊂ Ê andĜ is properly colored byc,
i.e., no edges between vertices of the same color were introduced in the process of
triangulatingG. If such chordal graph exists we say thatG can bec-triangulated.

Theorem 5 (Buneman1974)A set of taxa has a perfect phylogeny if and only if
the corresponding partition intersection graph can bec-triangulated, where vertex
coloring functionc assigns the same color to the character states of the same character
and different colors to the character states of different characters.

Kannan and Warnow [43] showed the polynomial time reductionin the oppo-
site direction: from theTriangulating Vertex Colored Graph Problem to
the Character Compatibility Problem, thus establishing that the two prob-
lems are equivalent. This result was later used by Bodlaender et al. [9] to show
that theCharacter Compatibility Problem is NP-complete. Even though the
Character Compatibility Problem is hard in general, there are efficient algo-
rithms when one or more of the problem’s natural parameters are fixed:n the number
of taxonomic units,k the number of characters, andr the maximum number of states
per character. Later on we will see how to apply the Buneman’stheorem to derive
a polynomial time solution for two charactersk = 2. For three characters there is a
series of algorithms that run in linear time [43, 41, 10]. Forarbitrary fixedk there
is anO(rk+1kk+1 + nk2) algorithm due to McMorriset al. [51]. When the number
of character states is bounded the problem can also be solvedefficiently. There is a
simple linear time algorithm to test if any number of binary characters is compatible
due to Gusfield [38]. For four-state characters there is anO(n2k) algorithm due
to Kannan and Warnow [44]. For arbitrary fixedr there is anO(23r(nk3 + k4))
algorithm due to Agarwala and Fernandez-Baca [2].

The Buneman’s theorem can be used to readily derive a well known test for
checking whether a pair of binary characters is compatible.The test is attributed to
E.O.Wilson [69]; it says that a pair of binary characters is compatible if and only
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if there does not exist a set of four taxa having all possible character states,00, 01,
10, and11. The same test can be derived through application of the Buneman’s
theorem. According to the theorem a pair of binary characters is compatible if and
only if the corresponding partition intersection can bec-triangulated. As there are
only two binary characters the partition intersection graph is bipartite and each set
of the bipartition contains two vertices (see for example Figure 1.4 (c)). Such a
graph is either acyclic and therefore can be triviallyc-triangulated, or it contains
a square and therefore does not have ac-triangulation as any attempt to eliminate
the square would add an edge between two vertices of the same color. The square
in the partition intersection graph corresponds to the presence of the four taxa with
all possible combinations of character values:00, 01, 10, and11, where00, for
example, means that both characters have state “0”. The compatibility test can be
extended to a pair of characters with more than two states (r > 2). In this case the
partition intersection graph would still be bipartite and the number of vertices in each
bipartition isr. It can be easily shown that this graph can bec-triangulated if and only
if it is acyclic. Therefore testing compatibility of two characters reduces to testing
whether the partition intersection graph is acyclic which can be done efficiently, for
example using any of the graph search algorithms such as BFS or DFS [17].

1.3.2 Character Stability

Assume that we are dealing with a set of characters which are difficult to gain but
relatively easy to lose. A classic example of such characters are introns [23]. Introns
are non-coding DNA sequences that interrupt the flow of a genecoding sequences
in eukaryotic genes. They are remarkably conserved betweensome lineages (e.g.
between Arabidopsis and Human), but they are lost at a significant rate in other
organisms (e.g. Worm) [58]. Parsimony methods applied to introns produced an
incorrect tree [58] indicating that the data contains misleading characters. One way
of eliminating such misleading characters is to restrict attention to a maximum set
of compatible characters. However, under the condition that the characters are hard
to gain but are frequently lost, a large enough set of compatible characters may not
exist. To address this problem Przytycka [56] proposed a newconsistency criterion
calledstability criterion.

The definition of the stability criterion is phrased as a property of a graph closely
related to the partition intersection graph and called acharacter overlap graph. A
character overlap graph for a set of taxa is a graphG = (V, E), whereV is a set of
characters, and(u, v) ∈ E if there exists a taxonT in the set such that bothu andv

are present inT . Note that the character overlap graph is simply a subgraph of the
partition intersection graph for a set of binary charactersthat is induced by the set of
characters in state “1”.

To motivate the concept of stability, consider a set of charactersA, B, C, D and
a set of four taxa described respectively by character pairs: (A, B), (B, C), (C, D),
and (D, A). That is the first taxon has charactersA andB in state “1” (and the
rest in state “0”), secondB and C in state “1”, and so on. In such a case the
corresponding character overlap graph is simply a square (see Figure 1.5(a)). There
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Fig. 1.5 The two possible (up to symmetry) topologies for an evolutionary tree for four
taxa containing respectively characters:(A, B), (B, C), (C, D) and(D, A). In each case
one pair of characters has to change state twice and the selection of such pair determines the
topology of the tree.

are two possible topologies for the evolutionary tree for this set of taxa as illustrated
in Figures 1.5(b)-(c). The number of character changes implied by each topology is
the same. However, in the first case characters,B andD, have to change their state
twice (and at least three of these character changes have to be deletions) while in the
second case charactersC andA have to change their state twice. If we knew which
pair is more preserved in a given lineage relative to the other pair, we would be able
to select the more likely topology. Similar situation occurs when we consider a larger
cycle. This motivates the following concept of stability.

We say that a character isstable if it does not belong to a chordless cycle in
the character overlap graph. Otherwise we say that the stability of the character
is challengedandnumber of challengesis equal to the number of chordless cycles
to which the character belongs. Note that the stability criterion can also identify
characters which are preferentially conserved in one lineage but lost in many other
lineages as stability of such characters is likely to be challenged by other characters.

Directly from the property of stability, we observe that theset of characters is
stable only if the corresponding character overlap graph ischordal. In particular, it
can be easily shown that a set of characters such that each character is gained at most
once and lost at most once (called in [56]persistent characters) is stable [56]. Note
that even the persistency criterion is significantly less stringent than the compatibility
criterion discussed before as it allows for two changes of a character state.

Unfortunately, the problem of finding the minimum number of nodes whose
removal leaves a graph chordal is NP complete [47]. To go around this problem, [56]
use a simple heuristic. Namely, rather than considering allchordless cycles, they
considered only squares. The squares were then eliminated by a greedy algorithm
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that iteratively removed characters belonging to the largest number of squares. After
all squares are removed, they applied the Dollo parsimony (the maximum parsimony
model that does not allow for multiple insertions of the samecharacter) to construct
the evolutionary tree based on the remaining characters.

The utility of a variant of this approach has been demonstrated by using it to
construct the evolutionary tree from intron data compiled by Rogozinet al. [58].
This data contains information about introns found in conserved (and orthologous)
genes of eight fully sequenced organisms:Arabidopsis thaliana(At), Homo sapiens
(Hs), C.elegans(Ce), Drosophila melanogaster(Dm), Anopheles gambaie(Ag),
Saccharomyces cerevisiae(Sc),Schizosaccharomyces pombe(Sp), andPlasmodium
falciparum(Pf). Introns are identified by their starting position withrespect to the
coding sequence. The data contains 7236 introns; however most of these introns
are observed in one organism only and thus are not informative. After eliminating
these single-organism entries, 1790 introns were left. Define intron patternto be
a 0/1 vector of length eight which defines, for a given intron,which species have
that intron and which do not. Note that with eight species there are28 − 9 different
intron patterns (the subtraction corresponds to the assumption that each intron of
interest must be in at least two species). Thus, some patterns are represented multiple
times. The patterns that appear significantly more often than is expected by chance
are considered to be more informative. Letni be the number of times patterni is
observed in the intron data, andri expected number of occurrences of the pattern
by chance. Definepi = ni

ri
to be the significance of the intron patterni. Let Si

be the number of squares in which an intron with patterni is involved. In this
setting, the greedy square removal algorithm was set to remove iteratively intron
patterns that maximize the valueSi

pi
. This provides a trade off between maximizing

the number of removed squares and minimizing the significance of the removed
intron patterns. The resulting evolutionary tree was consistent with the Coelomata
hypothesis ([1, 8, 70, 16]). In contrast, the compatibilitycriterion failed to produce
a meaningful tree in this case. The counterpart to the Coleometa hypothesis is the
Ectysozoa hypothesis ([3, 48, 55, 34, 60]) (see Figure 1.6).

1.4 FORMATION OF MULTI-PROTEIN COMPLEXES

The complexity in biological systems arises not only from various individual protein
molecules but also from their organization into systems with numerous interacting
partners. In fact, most cellular processes are carried out by multi-protein complexes,
groups of proteins that bind together to perform a specific task. Some proteins form
stable complexes, such as the ribosomal complex that consists of more than 80 pro-
teins and four RNA molecules, while other proteins form transient associations and
are part of several complexes at different stages of a cellular process. A better under-
standing of this higher-order organization of proteins into overlapping complexes is
an important step towards unveiling functional and evolutionary mechanisms behind
biological networks.



FORMATION OF MULTI-PROTEIN COMPLEXES xvii

Fig. 1.6 Three tree topologies for organisms:Arabidopsis thaliana(At), Homo sapi-
ens(Hs), C.elegans(Ce), Drosophila melanogaster(Dm), Anopheles gambaie(Ag),
Saccharomyces cerevisiae(Sc), Schizosaccharomyces pombe(Sp), andPlasmodium
falciparum(Pf) a) The incorrect Dollo parsimony tree computed from intron data b) The tree
consistent with Coelomata hypothesis. This is also exactlythe tree obtained after applying the
squares removal procedure. c) The tree consistent with Ecdysozoa hypothesis.

Data on protein interactions are collected from the study ofindividual systems, and
more recently through high-throughputexperiments. Thereare many types of protein
interactions, but in our quest to understand the dynamics ofmulti-protein complex
formation we are mostly interested in physical protein interactions and interactions
through being a member of the same protein complex, which we briefly review here.

There is a physical interaction between a pair of proteins ifthey come into a
close contact or bind each other. High-throughput discovery of physical protein
interactions is based on an experimental technique calledyeast two hybrid(Y2H)
[24]. To determine whether a pair of proteins,A and B, are able to physically
interact,A is fused to a DNA binding domain andB is fused to a transcription
activation domain. Physical interaction betweenA andB brings the DNA-binding
domain and the transcription activation domain in proximity, which activates the
transcription of the corresponding gene called areporter gene. The expression level
of the reporter gene is monitored and serves as a measure of physical interaction
between proteinsA andB. This technique was applied on a genome-wide scale to
map physical protein interaction maps for several model organisms, most notably
Saccharomyces cerevisiae[42, 67].

A pair of proteins may not physically interact but may still be members of the
same protein complex. High-throughput discovery of this type of protein interaction
is based on an experimental technique calledtandem affinity purification followed by
mass spectrometry(TAP/MS) [57]. In the TAP/MS approach, a protein of interest,
which is called abait, is tagged and used as a “hook” to pull out proteins that form a
complex with it. These proteins are then identified by mass spectrometry techniques.
The TAP/MS approach was used not only to map the interactome of Saccharomyces
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cerevisiae[40, 30, 29, 46], but also to study protein complexes involved in different
signaling pathways [12].

Protein interactions are routinely represented by a graph,a protein interaction
network, with vertices being the proteins and edges being the interactions. These
graphs offer a static view of protein interactions in the cell, even though some proteins
change their interacting partners and participate in different protein complexes. Can
the topology of inherently static protein interaction network be used to elucidate
the temporal order of dynamic multi-protein complex formation? In this section we
review two such attempts: Farach-Coltonet al. [22] used interval graphs to study the
way in which various proteins join the ribosome maturation pathway, Zotenkoet al.
[72] used chordal graph and cographs to study the order in which various complexes
are formed during cell signaling and other cellular processes.

1.4.1 Ribosomal Assembly

Ribosomes are massive molecular machines that are the majorplayers in protein
synthesis, they use a messenger RNA template to produce a polypeptide chain of
newly created protein molecule. In eukaryotic cells ribosomes consists of two sub-
units, the so called 40S (small) and 60S (large) particles, which together account for
four ribosomal RNAs and around 80 ribosomal proteins. Recent proteomic studies
in Saccharomyces cerevisiaehave identified around 200 auxiliary proteins that are
involved in the assembly of ribosomal subunits but are not part of mature ribosomes.
The ribosome synthesis is believed to proceed in an orderly pathway, theribosome
assembly pathway, and even though the main players of the pathway are known, little
is known about the order in which these proteins join the pathway. For a mini-review
see [21].

Farach-Colton and colleagues [22] proposed an interval model to represent the
assembly pathway of the 60S ribosomal particle. In this model an auxiliary protein
“enters” the pathway at some point and “leaves” the pathway at a latter point to never
enter the pathway again. The model further assumes that a protein participates in
the pathway through binding to other proteins currently in the pathway, therefore the
assembly line can be thought of as an evolution of one proteincomplex to which
proteins bind as they enter the pathway and from which proteins dissociate as they
leave the pathway. Under this model the protein interactionnetwork that spans the
auxiliary proteins involved in the pathway should be an interval graph: each auxiliary
protein is an interval and two proteins interact if and only if their interval overlap.
Therefore the protein interaction network can be used to reconstruct the order in
which the auxiliary proteins join the pathway.

Unfortunately, even if the proposed model captures correctly the ribosome as-
sembly mechanism, experimental errors and incompletenessof protein interaction
data may make the protein interaction network loose its interval graph property. To
overcome this problem the authors use a variant of the multi-sweep LexBFS algo-
rithm [18] to produce an ordering of vertices in the protein interaction network. The
algorithm uses several iterations/sweeps of the LexBFS algorithm, where the first
LexBFS sweep starts from an arbitrary vertex of the graph andevery subsequent



FORMATION OF MULTI-PROTEIN COMPLEXES xix

LexBFS sweep uses the orderings produced by the previous iterations to choose the
start vertex and break ties. If the network is an interval graph then the ordering
produced by the algorithm is an I-ordering. If, on the other hand, the network is
not an interval graph then the ordering as a whole won’t be an I-ordering but it will
induce an I-ordering on the vertices of some interval subgraph of the network; which
subgraph would be correctly ordered depends on the order in which the vertices of the
network are encountered by the algorithm. Thus, the authorssuggests that computing
an I-ordering of vertices of the graph is a reasonable step towards reconstruction the
order in which the auxiliary proteins join the pathway.

The authors tested their approach on the protein interaction network spanning 96
auxiliary proteins involved in the assembly of the 60S particle. As part of the interac-
tion data comes from TAP/MS experiments, it captures only interaction between the
25 bait proteins and other auxiliary proteins in a96 × 25 protein interaction matrix.
The rows/columns of the matrix were randomly permuted and supplied as an input
to the multi-sweep LexBFS algorithm. The experiment was performed 5000 times
and the rank of each protein in each of the 5000 orderings wererecorded. Even
though the input graph is not an interval graph only two different orderings emerged,
which are denoted byO1 andO2. If an ordering of vertices is close to an I-ordering
then the absolute difference in rank between any pair of adjacent vertices can not be
arbitrarily large. Therefore, the authors establish significance of the two discovered
orderings by the average difference in rank over two sets of protein interactions: a set
of protein interactions comprising the network and thus seen by the algorithm, and a
set of protein interactions not seen by the algorithm. The authors found that for both
seen and unseen interactions the average difference for theO1 andO2 is significantly
lower than average differences obtained with: (i) orderings produced by randomly
permuting the proteins; (ii) orderings computed by the algorithm on random graph
having the same degree distribution as the original input graph.

1.4.2 Multi-protein Complex Formation During Cell Signall ing

In order to adapt to their environment, cells have to detect and respond to a vast
variety of external stimuli. The detection and translationof these stimuli to a specific
cellular response is achieved through a mechanism calledsignal transduction pathway
orsignaling pathway. The general principles of signal propagation througha pathway
are common to almost all signaling pathways. First, an extracellular stimulus, usually
a chemical ligand, binds to a membrane bound receptor protein. The energy from
this interaction changes the state of the receptor protein,thus activating it. The active
receptor is able to pass the signal to theeffector systemthat generates the cell’s
response. A variety of proteins, the so-calledsignalling proteins, carry information
between the receptor protein and the effector system.Protein kinases, for example,
are special enzymes that add a phosphate group to certain residues of certain proteins
through a process calledphosphorylation, thus activating or suppressing the protein’s
ability to interact with other proteins.

The pattern of protein interaction during cell signaling isan excellent example of
transient protein interactions and dynamic complex formation. For example, consider
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a sequence of events in one of the best studied signaling pathways, the mating
pheromone signaling pathway inSaccharomyces cerevisiae(for more information
see a review by Bardwell [4]). There are two mating types of yeast cells. When a
yeast cell is stimulated by a pheromonesecreted by a cell of an opposite mating type, it
undergoes a series of physiological changes in preparationfor mating, which include
significant changes in gene expression of about 200 genes, oriented growth towards
the partner, and changes in the cell-cycle. Signal propagation through the pathway is
achieved through interaction of some 20 proteins, a schematic representation of the
pathway and description of correspondingprotein interactions are given in Figure 1.7.

Research efforts required to obtain the amount of detailed knowledge about a
signaling pathway as is currently available for the mating pheromone pathway are
enormous. Can the readily available high-throughput experimental data on protein
interactions be used to elucidate some information about the pathway, such as the
order of complex formation during signal propagation? In a recent work Zotenkoet
al. [72] have proposed a graph-theoretic method, Complex Overlap Decomposition
(COD), that tries to recover the order of protein complex formation from the topology
of protein interaction network that spans the pathway components. (The pathway
components can be obtained from literature. Alternatively, putative pathway compo-
nents can be automatically extracted from genome-wide protein interaction networks
by computational methods [65, 62].)

The main idea behind the COD method, which is depicted in Figure 1.8, is
to provide a representation of the protein interaction network that is analogous to
a clique tree representation for chordal graphs, but in which nodes are cographs
(representing functional groups) rather than maximal cliques (representing protein
complexes). Afunctional groupis either a protein complex (maximal clique in the
protein interaction network) or a set of alternative variants of such complex. Such
a representation accounts for two phenomena clearly illustrated in the pheromone
signaling pathway described above: (i) the dynamic complexformation does not
always follow a linear pathway but rather has a tree structure, where various branches
correspond to the activation of different response systems; (ii) there may be several
variants of a protein complex, such as MAPK complex centeredat the scaffold protein
which may include eitherKSS1 or FUS3 proteins but not both; It shoud be noted
that cographs and their modular decomposition were previously used by Gagneuret
al. to expose the hierarchical organization of protein complexes [27].

If a set of functional groups in a network were known then eachfunctional group
could be turned into a clique through addition of missing edges and clique tree
construction algorithm could be applied to the modified network. As the functional
groups are not known in advance, the authors propose a heuristic for their automatic
delineation, where a set of edges is added to the network so that the maximal cliques
in the modified network correspond to putative functional groups.

The COD method’s edge addition strategy and its biological motivation builds on
a functional interpretation of weak siblings in the network. Recall that a pair of nodes
in a graph are weak siblings if they are not adjacent to each other but are adjacent to
exactly the same set of nodes. In terms of protein interaction networks, weak siblings
are proteins which interact with the same set of proteins butdo not interact with each
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Fig. 1.7 A schematic representation of the key components of the pheromone signaling
pathway assembled from information in [49, 37, 4]. A pheromone peptide binds a G-protein
coupled receptor or GPCR (STE2/STE3). Activated receptor binds and activates a trimeric
G-protein: Gα subunit (GPA1),Gβ subunit (STE4) andGγ subunit (STE18). The flow
of information then proceeds via a three-tiered mitogen-activated protein kinase (MAPK)
cascade and results in activation of STE12 transcription factor and subsequent upregulation
of about 200 genes. The MAPK cascade also activates FAR1 protein, which is hypothesized
to trigger aG1 cell-cycle arrest through an interaction with CDC28, a master regulator of
the cell-cycle. The MAPK cascade consists of three protein kinases STE11, STE7 and either
FUS3 or KSS1, which activate each other sequentially through phosphorylation. Thus STE11
activates STE7, which in turn activates either FUS3 or KSS1.The phosphorylation process is
enhanced through a presence of a scaffold protein STE5, which binds and thus co-localizes all
three components of the MAPK cascade. Activated FUS3 and KSS1 proteins in turn bind their
substrates, DIG1/DIG2/STE12 complex and FAR1 protein. Another branch of the pathway,
which includes proteins STE4, STE18, FAR1, CDC24, CDC42, and BEM1 is responsible for
triggering a “polarized growth towards the mating partner”or polarization response.
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Fig. 1.8 An illustration of the Complex Overlap Decomposition (COD)method. An edge,
(3, 4), connecting a pair of weak siblings is added to the graph. A fill-in edge between proteins
5 and 8 is added to eliminate all five 4-cycles in the graph:{5, 6, 8, 7},{1, 5, 7, 8},{2, 5, 7, 8},
{1, 5, 6, 8}, and{2, 5, 6, 8}. If the modified graph is chordal, all clique tree representations are
computed and each such representation is extended into aTree of Complexesrepresentation
of the original graph. The Tree of Complexes is constructed by projecting each maximal clique
in the modified graph,G∗, to a functional group in the original graphG. For example, a four
node maximal clique,{1, 2, 5, 8}, in G∗ is projected to a four node functional group inG, by
removing a fill-in edge(5, 8). Each functional group is represented by a Boolean expression,
such as(1 ∧ 2) ∧ (5 ∨ 8), which means that the functional group contains two variants of a
complex,{1, 2, 5} and{1, 2, 8}. This figure is reproduced from [72].
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other. In particular, proteins that can substitute for eachother in a protein interaction
network may have this property. Similarly, weak siblings may correspond to a pair of
proteins that belong to the same protein complex but are not connected by an edge due
to missing data or an experimental error. Therefore, the heuristic first connects every
pair of weak siblings by an edge. If the modified graph is not chordal an additional
set of edges that connect pairs of proteins close to being weak siblings is added; each
such edge is a diagonal in one or moresquares, chordless cycles of length four, in
the graph. The heuristic finds a minimum cost set of diagonalsthat eliminates all
the squares in the graph, where the cost of a diagonal is inversely proportional to the
amount of overlap between the neighborhoods of its endpoints.

If the modification step succeeds, i.e., the modified graph ischordal, all the clique
tree representations of the modified graph are constructed and then extended to the
Tree of Complexes representationsof the original graph. The COD algorithm keeps
track of all the edge additions and uses this information to delineate functional
groups by projecting each maximal clique onto the original network and removing
all introduced edges contained in the clique. For example, in the modified graph of
Figure 1.8 a maximal clique with four nodes,{1, 2, 5, 8}, is projected to a functional
group by removing an edge connecting protein5 and8. This functional group contains
two variants of a protein complex,{1, 2, 5} and {1, 2, 8}, which are compactly
represented by the Boolean expression(1 ∧ 2) ∧ (5 ∨ 8) . If, on the other hand,
the modified graph is not chordal, the COD method stops without producing the
representation.

The authors demonstrated the effectiveness of their approach by decomposing
protein interaction networks for two signaling pathways: the mating pheromone
signaling pathway and the NF-kB signaling pathway. Here we apply the COD
method to the pheromone signaling pathway, where the pathway components were
taken from [4] (Table 1) and protein interactions that span the pathway components
from the DIP database [61] (version 01/16/2006; core set of interactions). The
network is shown in Figure 1.9(a). Since proteins STE2/STE3are disconnected
from the rest of the components, we have removed them from thenetwork in our
analysis. The COD method adds three diagonals to eliminate eleven squares in
the network: (STE4,BEM1), (FUS3, KSS1), and (GPA1, STE5), which results in
twelve functional groups listed in Figure 1.9 along with thecorresponding Boolean
expressions. There are twelve Tree of Complexes representations for this protein
interaction network one of which is shown in Figure 1.9(b). All the representations
agree on the interconnectionpattern between functional groups,B−E, H , andJ−L.
The difference between various tree variants comes from howfunctional groupsA,
F − G, andI are connected to the rest of the tree: (i) functional groupA can be
attached either through(A, C), or (A, B), or (A, J); (ii) functional groupI through
(I, E), or (I, D); (iii) functional groupF through(F, E) or (F, H).

Compare the representation in Figure 1.9(b) to the schematic representation of the
pheromone signaling pathway shown in Figure 1.7. Using onlyprotein interaction
information the COD method was able to recover two branches of the pathway, the
MAPK cascade branch and the polarization branch. The MAPK cascade branch
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Fig. 1.9 The mating pheromone signaling pathway.(a) The protein interaction network
for the components of the pathway. The network was drawn withPajek [5]. (b) One of
the twelve possible Tree of Complexes representations for the network.The activation of the
pathway corresponds to nodeA in the tree which contains theGβ (STE4) protein. From
nodeA, the Tree of Complexes splits into two branches. One branch roughly corresponds
to the MAPK cascade activated response, while another branch roughly corresponds to the
polarization response. The MAPK cascade branch spans four nodes in the tree:I , D, E, and
H . The activation of transcription factor complex byFUS3 andKSS1 is in nodesF and
G. The polarization branch spans nodesJ , K andL.
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spans four nodes in the tree:I, D, E, andH . The polarization branch spans nodes
J , K andL.
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